Write your name and student number on each sheet that you hand in.

Problem 1

A spin system has a three-fold degenerate ground state and a two-fold degenerate excited state at energy ε. The interaction between the spins can be neglected. The total number of spins is indicated by N . The number of spins in the excited state is indicated by n.
a) Make plausible that the number of microstates of the system can written as $\Omega(\mathrm{n})=\frac{\mathrm{N}!3^{\mathrm{N}-\mathrm{n}} 2^{\mathrm{n}}}{\mathrm{N}-\mathrm{n}!\mathrm{n}!}$
b) Calculate the energy of this system (in terms of $\varepsilon, \mathrm{k}, \mathrm{T}$ and N) using the microcanonical ensemble method.
c) Calculate the heat capacity of the system.

Problem 2

A diatomic molecule may to a good approximation be considered as vibrating in onedimensional simple harmonic motion with circular frequency ω. According to quantum mechanics such a system possesses an infinite set of non degenerate energy levels with energies $\varepsilon=\hbar \omega\left(\mathrm{r}+\frac{1}{2}\right), \mathrm{r}=0,1,2,3, \ldots \ldots$
a) Show that the vibrational partition function is given by

$$
Z_{v i b}=\frac{\mathrm{e}^{-\frac{\beta \hbar \omega}{2}}}{1-\mathrm{e}^{-\beta \hbar \omega}}, \text { where } \beta=\frac{1}{\mathrm{kT}} \text {. }
$$

b) Derive an expression for the average vibrational energy of a molecule.
c) How does the vibrational partition function $\mathrm{Z}_{\text {vib }}$, combine with the rotational partition function Z_{rot} and translational partition function Z_{tr} of the molecule to the total partition function Z of the entire gas (with N particles).
d) Derive an expression for the vibrational contribution to the entropy of the gas.

Problem 3

a) Draw a p-T phase diagram for a normal substance, indicating solid, liquid and gaseous phases as well as the special points in the diagram.
b) The vapour pressure curve is given by $P=C \exp \left\{-\frac{\Delta_{v a p} H}{R T}\right\}$

In this expression $\Delta_{v a p} H$ denotes the latent heat of vaporization per mol; R is the gas constant.
Give a derivation of this formula starting from the equation of Clausius-
Clapeyron. Determine the constant C in terms of given quantities and the normal boiling point T_{b} at pressure P_{0} (=1 atm.)

Problem 4

The partition function of a gas can be written as $Z=\sum_{\left\{n_{1}, n_{2}, n_{3} \ldots\right\}} e^{-\beta\left\{n_{1} \varepsilon_{1}+n_{2} \varepsilon_{2}+n_{3} \varepsilon_{3}+\ldots\right\}}$ where the sum goes over all the possible values of the occupation numbers n_{i} of the single particle states.
a) Derive, starting from the expression given above, the following relation for the average occupation number of the single particle state with energy ε_{i} :

$$
\overline{\mathrm{n}}_{\mathrm{i}}=-\frac{1}{\beta} \frac{\partial \ln Z}{\partial \varepsilon_{\mathrm{i}}}
$$

b) Show that the partition function of a photon gas is given by $Z_{p h}=\prod_{r=1}^{\infty} \frac{1}{1-e^{-\beta \varepsilon_{r}}}$
c) Show that the average number of photons of frequency ω is given by

$$
\overline{\mathrm{n}}(\omega)=\frac{1}{\mathrm{e}^{\beta \hbar \omega}-1}
$$

d) Show that the total number of photons N is given by $N=b \frac{\mathrm{Vk}^{3} \mathrm{~T}^{3}}{\hbar^{3} \pi^{2} \mathrm{c}^{3}}$

Hint: Remember that the density of states for a particles in a box with volume V is given by $f(p) d p=\frac{4 \pi V p^{2} d p}{h^{3}}$.

Problem 5

Consider a gas of N non interacting purely relativistic electrons with single particle energy $\varepsilon=\mathrm{pc}$. V denotes the volume of the gas.
a) Make plausible that the density of states for a free electron gas is given by $\mathrm{f}(\mathrm{p})=\frac{8 \pi \mathrm{Vp}^{2} \mathrm{dp}}{\mathrm{h}^{3}}$

The average occupation number of a single particle state with energy ε is given by:

$$
\mathrm{n}(\varepsilon)=\frac{1}{\mathrm{e}^{\beta(\varepsilon-\mu)}+1}
$$

b) Derive an expression for the Fermi energy ε_{F} of this gas (in terms of N, V, h and c).
c) Calculate the total energy of the gas assuming $\mathrm{T}=0$ (in terms of N and ε_{F}).
d) Derive an expression for the pressure of this gas assuming $\mathrm{T}=0$ (in terms of N , V, h and c).

Physical constants:

$$
\begin{array}{ll}
\text { Getal van Avogadro: } & \mathrm{N}_{\mathrm{A}}=6,02 \times 10^{23} \mathrm{~mol}^{-1} \\
\text { Constante van Planck: } & \mathrm{h}=6,626 \times 10^{-34} \mathrm{Js} \\
& \hbar=\frac{\mathrm{h}}{2 \pi}=1,055 \times 10^{-34} \mathrm{Js}
\end{array}
$$

Constante van Boltzmann: $\quad \mathrm{k}=1,381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gasconstante: $\quad \mathrm{R}=8,315 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Lichtsnelheid: $\quad \mathrm{c}=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rustmassa elektron $\quad m_{e}=9,11 \times 10^{-31} \mathrm{~kg}$
Rustmassa proton
$\mathrm{m}_{\mathrm{p}}=1,67 \times 10^{-27} \mathrm{~kg}$
Bohr magneton
$\mu_{\mathrm{B}}=9,27 \times 10^{-24} \mathrm{~A} \mathrm{~m}^{2}$

Integrals:

n	$\int_{0}^{\infty} \mathrm{dx} \mathrm{x}^{\mathrm{n}} \mathrm{e}^{-a x^{2}} \quad(\mathrm{a}>0)$	$\int_{0}^{\infty} \frac{\mathrm{x}^{n} \mathrm{dx}}{\mathrm{e}^{\mathrm{x}}-1}$	$\int_{0}^{\infty} \frac{\mathrm{x}^{\mathrm{n}} \mathrm{dx}}{\mathrm{e}^{\mathrm{x}}+1}$	$\int_{0}^{\infty} \frac{\mathrm{x}^{\mathrm{n}} \mathrm{e}^{\mathrm{x}}}{\mathrm{x}^{\mathrm{x}}-1^{2}}$,	$\int_{0}^{\infty} \mathrm{x}^{\mathrm{n}} \ln \left(1-\mathrm{e}^{-\mathrm{x}}\right) \mathrm{dx}$
0	$\frac{1}{2} \sqrt{\left(\frac{\pi}{\mathrm{a}}\right)}$	diverges	$\ln 2$	diverges	$-\frac{\pi^{2}}{6}$
$1 / 2$	$\frac{0,6127}{\mathrm{a}^{3 / 4}}$	$2,612 \frac{\sqrt{\pi}}{2}$	0,6781	diverges	$-1,341 \frac{\sqrt{\pi}}{2}$
1	$\frac{1}{2 \mathrm{a}}$	$\frac{\pi^{2}}{6}$	$\frac{\pi^{2}}{12}$	diverges	$-1,202$
$3 / 2$	$\frac{0,4532}{\mathrm{a}^{5 / 4}}$	$1,341 \frac{3 \sqrt{\pi}}{4}$	1,153		$-1,127 \frac{3 \sqrt{\pi}}{4}$
2	$\frac{1}{4} \sqrt{\frac{\pi}{a}}$	2,404	1,803	$\frac{\pi^{2}}{3}$	$-\frac{\pi^{4}}{45}$
$5 / 2$	$\frac{1,662}{\mathrm{a}^{7 / 4}}$	$1,127 \frac{15 \sqrt{\pi}}{8}$	3,083		$-3,505$
3	$\frac{1}{2 \mathrm{a}^{2}}$	$\frac{\pi^{4}}{15}$	$\frac{7 \pi^{4}}{120}$	7,212	$-6,221$
$7 / 2$	$\frac{0,5665}{\mathrm{a}^{9 / 4}}$	12,268	11,184		
4	$\frac{3 \sqrt{\pi}}{8 a^{5 / 2}}$	24,886	23,331	$\frac{4 \pi^{4}}{15}$	

